Vanadium Recovery and LiB Recycling

Annual General Meeting
September 2020
ACKNOWLEDGEMENT

- The majority of the content in this presentation has been provided courtesy of Neometals Ltd (ASX:NMT) and has been used with their express permission.

- Neometals innovatively develops opportunities in minerals and advanced materials essential for a sustainable future. With a focus on the energy storage megatrend, the Neometals strategy revolves around de-risking and developing long life projects with strong partners and integrating down the value chain to increase margins and return value to shareholders.

- Neometals is the largest shareholder of Critical Metals (16.4%).

- Critical Metals has entered a co-operation agreement with Neometals to extract vanadium from steel slag in Sweden and Finland using a proprietary hydrometallurgical process.

- Critical Metals has the sole and exclusive right to commercialise Neometals’ LiB recycling technology in Sweden, Norway, Denmark and Finland.
INTRODUCTION

• Critical Metals aims to supply Europe with metals from Scandinavia via:
 • urban mining (recovering metals from industrial by-product stockpiles); and
 • traditional mining (discovering and extracting metals from the earth).
VANADIUM RECOVERY PROJECT
VANADIUM RECOVERY

• Critical Metals aims to recover vanadium from steel slag and process it into high-grade vanadium products used in the steel alloy, energy storage and aerospace industries.

• Potential for vanadium production in the lowest quartile of production costs globally due to the very high vanadium grade within the stockpiles, the proposed low energy – low emission – low throughput flowsheet and the location of the stockpiles.

• Vanadium products expected to supply ~5% of global demand from 2025.
OPPORTUNITY

- To supply European and North American industry with high-purity vanadium products produced in Sweden and Finland without the need to open a new mine.

- To recover metals from by-products in an environmentally friendly manner powered by renewable energy (hydro and wind).

- To supply the European energy storage industry (principally vanadium redox flow batteries) with responsibly sourced vanadium chemicals.

- To decrease Europe’s reliance on China, South Africa and Russia for the supply of vanadium.
TRANSACTION

• 10 year slag supply agreement with SSAB
 • Conditional on meeting project study milestones by due dates and commencing production by December 2024
 • Right to purchase at least 2M dry metric tonnes of slag

• Collaboration agreement with Neometals Ltd
 • Neometals to fund all studies up to final investment decision, which if positive will lead to a 50:50 joint venture
 • Critical Metals will fund location study for plant in Sweden or Finland
 • Neometals entitled to a gross revenue royalty on sales of vanadium products
NEED FOR A SECURE EU SUPPLY CHAIN

Vanadium on European Union Critical Metals List since 2017

Source: Vanitec
THE BACKGROUND

- Scandinavian steel giant SSAB has +2Mt of high-grade vanadium-bearing by-product ("Slag") stored at 3 steel mills in Sweden and Finland.
- Approx 2Mt of very high-grade vanadium feedstocks secured by Critical Metals Ltd (15.4% NMT) under supply agreement
- Neometals funding evaluation of vanadium recovery using proprietary eco-friendly hydromet process
- Scoping study indicated potential lowest quartile position opex for proposed 50:50 Incorporated JV
- Location study in progress considering Luleå and Boden in Sweden, Raahe and Pori in Finland and Teesside in England.
LOCATION AND STOCKPILES

Luleå
- Slag stored: +630kt
- Vanadium Grade V_2O_5: +4%
- Contained V_2O_5: +25,000t
- Net Slag Added: 100ktpa

Raahhe
- Slag stored: +360kt
- Vanadium Grade V_2O_5: +3%
- Contained V_2O_5: +13,000t
- Net Slag Added: 80ktpa

Oxelösund
- Slag stored: +890kt
- Vanadium Grade V_2O_5: +3%
- Contained V_2O_5: +25,000t
- Net Slag Added: 90ktpa

Agreement Volumes and Price

- Initial purchase of 700kt of Slag from Luleå post FID
- Purchase 200ktpa Slag post commercial production for 10 years
- Price linked to prevailing FeV80 vanadium price and vanadium content (reference grade 2.2% $V \sim 3.9\% V_2O_5$)
MATERIALS FLOW – VANADIUM RECOVERY

Steel Producer’s Gate
Knowledge and any specific license to use the product

Slag Product: 200,000t/y

Storage of Secondary Products
3 years of intermediate storage corresponds to ~ 795,000 tonnes (SSM)
Considerations
- Minimise the storage area because of the risk of increased dust problem with large areas
- Risk assessment regarding potential leakage to land and water over time
- Financial security

Secondary Product 265,000 t/y (SSM)
Purpose
- Substitution for sand
- Stabilisation of soil
- Neutralisation of acid soil
- Rehabilitation of quarries
- Future recovery of other products/material (Mg, Ti etc)

Primary Product: ~ 6,000t/y (V₂O₅)

Slag, 2 M tonnes
Slag is a product if it has a purpose. CAB will decide from case to case.

Process plant

CriticalMetals
HIGH LEVEL FLOWSHEET – VANADIUM RECOVERY
CARBON CAPTURE – VANADIUM RECOVERY

The carbon dioxide capture and concentration activities take place on the CO₂ emitters property by “plugging in” to the chimney / flue stack. The activity might be managed by the emitter, by a third party or by Critical Metals. Once captured and concentrated the CO₂ will be transported to the Vanadium Recovery Project for use in the hydrometallurgical flowsheet.
MINI PILOT PLANT – VANADIUM RECOVERY
One of the secondary products is stabilised slag material (SSM).

SSM is considered inert and non-hazardous.

SSM product is a filter cake of calcium carbonate rich particles, normally <20μm and with a water content of about 20% or less (depending on the filtration method and the level at which the material is dried during filtration).

Annual production of the dried material is estimated at ~265,000 tons / year (291,500 - 307,400 tons / year wet filter cake).

pH of ~11 and a liquid density of 1.02.

Chemical composition is estimated to be calcium (~24%), iron (~14%), magnesium (~4%), silica (~3%), manganese (~2%), aluminum (~0.75%), titanium (~0.6%), vanadium (~0.4%), phosphorus (~0.2%) and chromium (0.1%).

As the test work continues, more accurate information will be obtained.
INPUTS – VANADIUM RECOVERY

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>CHEMICAL SYMBOL</th>
<th>VOLUME / MASS (TONNES/Y)</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slag</td>
<td></td>
<td>200,000</td>
<td>Feedstock currently stockpiled in Luleå, Oxelösund and Raahe.</td>
</tr>
<tr>
<td>Raw water</td>
<td>H₂O</td>
<td>165,000</td>
<td>To be sourced from local supplier. Raw water storage tanks. Used as make-up for cooling tower and reagent mixing. First fill ~1,000m³.</td>
</tr>
<tr>
<td>Potable water</td>
<td>H₂O</td>
<td>4,500</td>
<td>To be sourced from local supplier. Used in ablution facilities, safety showers and main buildings. Direct municipal pipeline assumed. No storage. First fill ~150m³.</td>
</tr>
<tr>
<td>Sodium carbonate</td>
<td>Na₂CO₃</td>
<td>25,000</td>
<td>Commercial supply, ~3 trucks per day.</td>
</tr>
<tr>
<td>Carbon dioxide</td>
<td>CO₂</td>
<td>80,000</td>
<td>To be sequestered from industrial site currently emitting gas to atmosphere, delivered via pipeline or truck.</td>
</tr>
<tr>
<td>Sulfuric acid</td>
<td>H₂SO₄</td>
<td>15,000</td>
<td>Commercial supply, ~2 trucks per day.</td>
</tr>
<tr>
<td>Sodium (or potassium) hydroxide</td>
<td>NaOH / KOH</td>
<td>10,000</td>
<td>Commercial supply, ~2 trucks per day</td>
</tr>
<tr>
<td>Ammonia</td>
<td>NH₃</td>
<td>300</td>
<td>Commercial supply, ~2 trucks per month – stored in steel tanks</td>
</tr>
<tr>
<td>Heat</td>
<td></td>
<td>250,000,000 MJ/year</td>
<td>Heat for building and plant.</td>
</tr>
</tbody>
</table>
OUTPUTS – VANADIUM RECOVERY

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>CHEMICAL SYMBOL</th>
<th>VOLUME (TONNES/Y)</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vanadium pentoxide</td>
<td>V_2O_5</td>
<td>6,000 tpa</td>
<td>Produced as a flake and stored in bulker bags and or sealed 44-gallon drums.</td>
</tr>
<tr>
<td>Stabilised slag material (SSM)</td>
<td></td>
<td>265,000</td>
<td>To be stored on site or sold.</td>
</tr>
<tr>
<td>Sodium (or potassium) sulphate</td>
<td>Na_2SO_4 / K_2SO_4</td>
<td>25,000</td>
<td>Produced as crystallised material (likely anhydrous) ready for sale and distribution. Marketing pending.</td>
</tr>
</tbody>
</table>
SCOPING STUDY RESULTS

Capital costs
US $159m (inc 20% contingency)

Vanadium Output
12 m lbs p.a. high purity V₂O₅

Payback
<5 years

Pre tax NPV₁₀
US $138m (IRR 24%)

OPEX
US$3.92/lb

Plant feed rate
200,000tpa

Source: Please refer to ASX announcement 24 June 2020 titled “Vanadium Recovery Project – Scoping Study Results”
VANADIUM PRICE CHART

Ferrovanadium price chart

Russia's vanadium material disappeared, the market price moved up and thereafter Russia restarted production.

Problems with production of electrical power and resulting load shedding in South Africa negatively impacted vanadium production leading to the 2008 price spike.

Advent of grade 3 rebar in China. The new standard forced Chinese rebar producers to start using vanadium (grade 3) for high strength rebar applications.

In preparation of the new high-strength rebar standard, mills in China were building up their inventories. Standard came into effect in November 2018.

Highveld Steel & Vanadium stops production.

Reduction due to: slower than anticipated implementation of Rebar standard; substitution with ferronibium; and opportunistic production (stone coal).

Source: Bushveld Minerals Ltd, April 2020
HIGH GRADE / PROCESS DELIVERS A SUSTAINABLE COMPETITIVE ADVANTAGE

Vanadium Cost Curve 2020

- **Luleå Slag Stockpile Reference Grade 3.93% V_2O_5**
- **Primary Vanadium Producers Mineral Concentrate Grades**
- **New steel slag based production in China in 2019**
- **Vanadium Recovery Project**
- **2020 Demand Projection 112,959 MTV**

Source: TTP Squared
FORWARD WORK PROGRAM

Evaluation studies to be funded and managed by Neometals to timetable below:

- Metallurgical testwork
- Class 5, 4 and 3 AACE (Association for the Advancement of Cost Engineering) Engineering Cost studies

Indicative Project Timeline – Steel Slag Project

<table>
<thead>
<tr>
<th>Class 5 Scoping Study</th>
<th>Class 4 Prefeasibility Study</th>
<th>Class 3 Feasibility Study</th>
<th>Neometals making a positive FID</th>
<th>First production from the plant</th>
</tr>
</thead>
<tbody>
<tr>
<td>31Dec2020</td>
<td>30Jun2021</td>
<td>30Jun2022</td>
<td>31Dec2022</td>
<td>31Dec2024</td>
</tr>
</tbody>
</table>

Positive study will form the basis for decision to form the Joint Venture

Purchase 700,000t of Slag stockpiled at Luleå
TIMELINE

<table>
<thead>
<tr>
<th>Activity</th>
<th>2020</th>
<th>2021</th>
<th>2022</th>
<th>2023</th>
<th>2024</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preparation for consultation phase</td>
<td>Q1</td>
<td>Q2</td>
<td>Q3</td>
<td>Q4</td>
<td></td>
</tr>
<tr>
<td>Consultation phase (ongoing)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preparation of application, technical description and EIA (3-9 months)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Application handed in to Land and Environment Court or CAB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supplement to application (3-6 months)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Official communication of the application incl. response from company (3-9 months)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Court trial / decision in writing by CAB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Judgement</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Appeal (?)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commence site preparation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commence construction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commission plant</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SHORT TERM MILESTONES

<table>
<thead>
<tr>
<th>Date</th>
<th>Milestone</th>
</tr>
</thead>
<tbody>
<tr>
<td>October 2020</td>
<td>• JORC compliant resources for Luleå stockpile</td>
</tr>
<tr>
<td></td>
<td>• Mini Pilot test results</td>
</tr>
<tr>
<td>November 2020</td>
<td>• Completion of Location Study</td>
</tr>
<tr>
<td></td>
<td>• Delivery of Scoping Study to SSAB</td>
</tr>
<tr>
<td>December 2020</td>
<td>• Capital Raise for Critical Metals</td>
</tr>
<tr>
<td>January 2021</td>
<td>• Commencement of PFS</td>
</tr>
<tr>
<td>April 2021</td>
<td>• Operation of Pilot Plant</td>
</tr>
<tr>
<td>June 2021</td>
<td>• Delivery of PFS to SSAB</td>
</tr>
</tbody>
</table>
LIB RECYCLING PROJECT
LITHIUM ION BATTERY RECYCLING

- The EU needs between 10 and 20 Lithium Ion Battery (LiB) Giga factories to meet demand.

- The EU faces intense global competition for critical metals to supply the Giga factories.

- Waste (off-spec and end-of-life) generated from LiBs will be large and must be recycled.

- Forecast growth of EVs using LiBs is massive.

- Substantially more critical metals need to be sourced from within the EU.

- High potential to source feedstock and create a sustainable LiB recycling business with support of both the EU legislation and Scandinavian recycling culture.
TRANSACTION

- Critical Metals has the sole and exclusive rights to recycle LiBs in Sweden, Norway, Denmark and Finland using Neometals’ proprietary technology. Critical Metals is free-carried through the technology development process up to a Final Investment Decision.

- Neometals and SMS Group GmbH (“SMS”) have established a recycling joint venture. SMS is a global, leading partner for the metal industry, refer www.Primobius.com.

- Execution of an agreement between Neometals and SMS Group has added significant value to the sole and exclusive license held by Critical Metals.
OPPORTUNITY FOR CRITICAL METALS

- Independently process waste (off-spec and end-of-life) LiBs.
 - Revenue from sale of high-purity metals ‘produced’ from recycling waste LiBs.

- Batch process (toll treat) waste (off-spec and end-of-life) lithium ion batteries on behalf of collectives, existing recycling companies and importers & distributors of electronic and electric equipment.
 - Revenue from providing service to third party.

- Joint venture initiatives with National Government, local Kommuns, recycling companies, collectives and importers & distributors of electronic and electric equipment.
 - Partner with existing actors to generate an optimal solution for the recycling of waste containing critical metals.
These risks have led to concerns over the storage, transport, disposal, ethical supply and sustainability of these batteries. As a result, many countries have imposed recycling regulations in order to help reduce these risks. EU Battery Directive – ‘producers’ must recycle or acquit the same amount. EOL vehicle directive – more than 85% to be reused and recycled. Mandatory recycling in California - no landfill dumping.
REDUCING THE LEVEL OF HAZARDOUS MATERIAL

- Expired LiBs are growing in volume.
- Combustible and hazardous content at risk of being dumped into landfill.
- Small % of LiBs are currently being recycled.
- Incumbent recycling technology sees most of the valuable ingredients burnt and released into the atmosphere.

>15MT Discarded LiB from 2020-30
SPENT LIBS ARE ECONOMICALLY VALUABLE

NEOMETALS’ STUDIES INDICATE ROBUST ECONOMICS IRRESPECTIVE OF FEEDSTOCK

In-situ Value of various LiB’s (per tonne cells) (@Spot)

Recoverable Revenue per Tonne of Batteries (US$/t)

LCO NMC 111 NMC 532 NMC 622 NMC 811 NCA

Scoping Study Opex 2019
~US$1600/t cells

Source: Benchmark Mineral Intelligence (pricing assumptions for nickel, cobalt and lithium products)
NMT Management (battery cell composition, pricing assumptions for copper and manganese products)
LIB RAW MATERIALS ARE LARGEST SOURCE OF CO\textsubscript{2} IN ELECTRIC VEHICLES

Source: Volkswagen Group

CriticalMetals
HYDROMETALLURGICAL RECYCLING HAS THE LOWEST CARBON FOOTPRINT

Raw Material CO2 Savings - Traditional Mining vs Battery Recycling

- **Primary Raw Minerals Extraction**: 8.1 CO2-Eq (tonne)
- **Incumbent Pyromet Recycling Method**: 4.3 CO2-Eq (tonne)
- **Leading Hydromet Recycling Method**: 0 CO2-Eq (tonne)

Source: Dusenfeld

CriticalMetals
EU NEEDS DOMESTIC RECYCLING...

European Lithium Ion Battery Recycling Feed

Source: Benchmark Minerals Intelligence (Battery Cell Capacity) and Neometals Management (Utilisation rate 75%, Scrap Rate 10% and Cell Weight 45g/Wh)

CriticalMetals
Major European EV Battery Recycling Facility Capacities

- **Primobius Stage 2 Plant**: 200,000t
- **Primobius Stage 1 Plant**: 20,000t

Facilities:
- Accurec Recycling GmbH (Denmark)
- AkkuSer Oy (Finland)
- Batrec Industries AG (Switzerland)
- Glencore (Norway)
- Recaupyl S.A. (France)
- SNAM (France)
- Umicore (Belgium)

Source: Benchmark Minerals Intelligence
RECYCLING TECHNOLOGY

NEOMETALS HIGH-LEVEL FLOWSHEET

LCO/NMC Battery feed

- Prismatic
- Pouch
- Cylindrical

Stage 1
Shredding & Sorting

- Black mass

Stage 2
Refining

- Cathode Materials (Ni, Co, Mn)
- Lithium chemical in solution
- Carbon

Results:
- Plastics
- Steel casings
- Metal Foil (Cu, Al)

2nd Life
INDICATIVE TIMELINE

Indicative Project Timeline – LiB Recycling

- **Commenced** Procurement phase for demonstration plant
- **Complete** Construction of demonstration plant
- **Complete** Demonstration Plant Trial
- **Complete** Class 3 ECS Capex & Opex
- **Complete** Feasibility study and FID*
- **Commence** Commercial scale integrated operations

- **JUNQ20**
- **DEC 20**
- **MAR 21**
- **SEPQ21**
- **MARQ22**
- **~12 months**

Running Feedstock, Offtake, Product Evaluation in parallel

(*) Subject to NMT and JV Board Approval
VALUE PROPOSITION

~20KTPA STAGE 1 PLANT
Expect significant economies of scale for 200ktpa stage 2

- Capital costs: US $66m* (A$92M)
- Payback: <2 years
- Pre tax NPV_{12}: IRR 72%
 (US$220M A$308M)

- Recycling plant feed rate: 50TPD
 18,236TPA

- EV & Consumer battery feed:
 Products
 Inc. high purity Co, Ni, Cu, Li

- OPEX:
 US <$7/lb* contained cobalt excluding co-products

*1 USD: 1.4 AUD at US$6.15/kg Cobalt Sulphate (~20% cobalt contained in CoSO4), US$5/kg Lithium Sulphate, US$3.30/kg Nickel Sulphate, US$2/kg Copper Sulphate

Source: Please refer to ASX announcement 4 June 2019 titled "Battery Recycling – Scoping Study Results"
MINERALS EXPLORATION

• Soidinvaara Vanadium Project, Finland – ready for drill testing optimised targets, completing additional metallurgy and assessing economic potential.

• Lapland Cu-Ni-PGE / Fe-V-Ti / IOCG Project, Sweden – aiming to confirm the camp scale nature of this highly prospective “hot-spot”.

• Pahtohavare Copper-Gold Project – free-carried by joint venture partner (Lovisagruvan AB) through to Decision to Mine.

• Paljasjärvi Iron Projects – refer to www.kirauniron.se (a wholly owned subsidiary of Critical Metals Ltd)
DIRECTORS

<table>
<thead>
<tr>
<th>Name</th>
<th>Position</th>
<th>Region</th>
<th>Experience and Qualifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jonathan Murray</td>
<td>Independent Non-Executive Chairman</td>
<td>Perth, Australia</td>
<td>20 years experience as a corporate lawyer; Senior Partner of Steinpreis Paganin. Principal legal practice areas include equity capital markets, takeovers, project acquisitions and divestments, corporate governance, commercial law and strategy.</td>
</tr>
<tr>
<td>Kris Gram</td>
<td>Non-Executive Director</td>
<td>Oslo, Norway</td>
<td>5 years Management Consultant and 10 years Investment Banking experience. Currently COO of Norwegian investment bank.</td>
</tr>
<tr>
<td>Amanda Scott</td>
<td>Non-Executive Director of Swedish Subsidiary Companies</td>
<td>Malå, Sweden</td>
<td>Geologist with 15 years experience (8 years in Sweden). Extensive experience in Western Australia and northern Scandinavia generating new projects and exploring for lithium, gold, copper, nickel, PGEs, iron and manganese.</td>
</tr>
<tr>
<td>Olof Forslund</td>
<td>Non-Executive Director</td>
<td>Malå, Sweden</td>
<td>Geophysicist with extensive international experience in the mineral exploration industry. Founder of Malå Geoscience. Commenced with Geological Survey of Sweden (SGU) in 1966 and during the period 2003 – 2007 was Regional Manager of the Mineral Resources Information Office in Mala, Sweden.</td>
</tr>
<tr>
<td>Markus Bachmann</td>
<td>Non-Executive Director</td>
<td>Johannesburg, South Africa</td>
<td>Corporate finance professional with 20 years experience. Founder of Craton Capital. Craton Capital awarded Fund Manager of the Year at the Mining Journal’s “Outstanding Achievement Awards” during December 2010.</td>
</tr>
<tr>
<td>Damian Hicks</td>
<td>Executive Director</td>
<td>Perth, Australia</td>
<td>15 years experience as Founder of resources companies in Western Australia (since 2002) and Sweden (since 2007). Financial, legal and compliance qualifications with principal responsibilities including strategy formulation, team development, deal origination & execution and capital raising. Director of all companies within the Group.</td>
</tr>
</tbody>
</table>

!CriticalMetals Logo
DIRECTORS & MANAGEMENT

<table>
<thead>
<tr>
<th>Per-Olof Renling – Non-Executive Director of Swedish Subsidiary Company</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resides in Malå, Sweden</td>
</tr>
<tr>
<td>Experienced in Power Generation and Power Distribution, particularly construction of power lines and operation and maintenance at thermal power generation and heat distribution plants. Currently Mr Renling is the site manager for several wind farms.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mindy Ku – Company Secretary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resides in Perth, Australia</td>
</tr>
<tr>
<td>Accountant. Diverse experience in finance, compliance, information technology, marketing and management, both in Australia and internationally (www.corpbservices.com).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pernilla Renberg – Chief Administrator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resides in Malå, Sweden</td>
</tr>
<tr>
<td>Responsible for the day-to-day operations, management and administration of all companies within the Group.</td>
</tr>
</tbody>
</table>
All companies within the Group are wholly owned.
For further information please contact:

<table>
<thead>
<tr>
<th>Damian Hicks</th>
<th>Pernilla Renberg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Executive Director</td>
<td>Chief Administrator</td>
</tr>
<tr>
<td>M: +61 419 930 087</td>
<td>M: +46 703 225 133</td>
</tr>
<tr>
<td>E: dhicks@criticalmetals.eu</td>
<td>E: prenberg@criticalmetals.eu</td>
</tr>
</tbody>
</table>

www.criticalmetals.eu | @CuAuNiFeLiCoC